Определение 1

Криптографическая защита информации – это механизм защиты посредством шифрования данных для обеспечения информационной безопасности общества.

Криптографические методы защиты информации активно используются в современной жизни для хранения, обработки и передачи информации по сетям связи и на различных носителях.

Сущность и цели криптографической защиты информации

Сегодня самым надежным способом шифрования при передаче информационных данных на большие расстояния является именно криптографическая защита информации.

Криптография – это наука, изучающая и описывающая модели информационной безопасности (далее – ИБ) данных. Она позволяет разрешить многие проблемы, что присущи информационной безопасности сети: конфиденциальность, аутентификация, контроль и целостность взаимодействующих участников.

Определение 2

Шифрование – это преобразование информационных данных в форму, которая будет не читабельной для программных комплексов и человека без ключа шифрования-расшифровки. Благодаря криптографическим методам защиты информации обеспечиваются средства информационной безопасности, поэтому они являются основной частью концепции ИБ.

Замечание 1

Ключевой целью криптографической защиты информации является обеспечение конфиденциальности и защиты информационных данных компьютерных сетей в процессе передачи ее по сети между пользователями системы.

Защита конфиденциальной информации, которая основана на криптографической защите, зашифровывает информационные данные посредством обратимых преобразований, каждое из которых описывается ключом и порядком, что определяет очередность их применения.

Важным компонентом криптографической защиты информации является ключ, отвечающий за выбор преобразования и порядок его реализации.

Определение 3

Ключ – это определенная последовательность символов, которая настраивает шифрующий и дешифрующий алгоритм системы криптозащиты информации. Каждое преобразование определяется ключом, задающим криптографический алгоритм, который обеспечивает безопасность информационной системы и информации в целом.

Каждый алгоритм криптозащиты информации работает в разных режимах, которые обладают, как рядом преимуществ, так и рядом недостатков, что влияют на надежность информационной безопасности государства и средства ИБ.

Средства и методы криптографической защиты информации

К основным средствам криптозащиты информации можно отнести программные, аппаратные и программно-аппаратные средства, которые реализуют криптографические алгоритмы информации с целью:

  • защиты информационных данных при их обработке, использовании и передаче;
  • обеспечения целостности и достоверности обеспечения информации при ее хранении, обработке и передаче (в том числе с применением алгоритмов цифровой подписи);
  • выработки информации, которая используется для аутентификации и идентификации субъектов, пользователей и устройств;
  • выработки информации, которая используется для защиты аутентифицирующих элементов при их хранении, выработке, обработке и передаче.

В настоящее время криптографические методы защиты информации для обеспечения надежной аутентификации сторон информационного обмена являются базовыми. Они предусматривают шифрование и кодирование информации.

Различают два основных метода криптографической защиты информации:

  • симметричный, в котором один и тот же ключ, что хранится в секрете, применяется и для шифровки, и для расшифровки данных;
  • ассиметричный.

Кроме этого существуют весьма эффективные методы симметричного шифрования – быстрый и надежный. На подобные методы в Российской Федерации предусмотрен государственный стандарт «Системы обработки информации. Криптографическая защита информации. Алгоритм криптографического преобразования» - ГОСТ 28147-89.

В ассиметричных методах криптографической защиты информации используются два ключа:

  1. Несекретный, который может публиковаться вместе с другими сведениями о пользователе, что являются открытыми. Этот ключ применяется для шифрования.
  2. Секретный, который известен только получателю, используется для расшифровки.

Из ассиметричных наиболее известным методом криптографической защиты информации является метод RSA, который основан на операциях с большими (100-значными) простыми числами, а также их произведениями.

Благодаря применению криптографических методов можно надежно контролировать целостность отдельных порций информационных данных и их наборов, гарантировать невозможность отказаться от совершенных действий, а также определять подлинность источников данных.

Основу криптографического контроля целостности составляют два понятия:

  1. Электронная подпись.
  2. Хэш-функция.

Определение 4

Хэш-функция – это одностороння функция или преобразование данных, которое сложно обратить, реализуемое средствами симметричного шифрования посредством связывания блоков. Результат шифрования последнего блока, который зависит от всех предыдущих, и служит результатом хэш-функции.

В коммерческой деятельности криптографическая защита информации приобретает все большее значение. Для того чтобы преобразовать информацию, используются разнообразные шифровальные средства: средства шифрования документации (в том числе для портативного исполнения), средства шифрования телефонных разговоров и радиопереговоров, а также средства шифрования передачи данных и телеграфных сообщений.

Для того чтобы защитить коммерческую тайну на отечественном и международном рынке, используются комплекты профессиональной аппаратуры шифрования и технические устройства криптозащиты телефонных и радиопереговоров, а также деловой переписки.

Кроме этого широкое распространение получили также маскираторы и скремблеры, которые заменяют речевой сигнал цифровой передачей данных. Производятся криптографические средства защиты факсов, телексов и телетайпов. Для этих же целей применяются и шифраторы, которые выполняются в виде приставок к аппаратам, в виде отдельных устройств, а также в виде устройств, которые встраиваются в конструкцию факс-модемов, телефонов и других аппаратов связи. Электронная цифровая подпись широкое применяется для того, чтобы обеспечить достоверность передаваемых электронных сообщений.

Криптографическая защита информации в РФ решает вопрос целостности посредством добавления определенной контрольной суммы или проверочной комбинации для того, чтобы вычислить целостность данных. Модель информационной безопасности является криптографической, то есть она зависит от ключа. По оценкам информационной безопасности, которая основана на криптографии, зависимость вероятности прочтения данных от секретного ключа является самым надежным инструментом и даже используется в системах государственной информационной безопасности.

На протяжении всей своей истории человек испытывал потребность в шифровке той или иной информации. Неудивительно, что из этой потребности выросла целая наука - криптография. И если раньше криптография по большей части служила исключительно государственным интересам, то с приходом интернета ее методы стали достоянием частных лиц и широко используются хакерами, борцами за свободу информации и любыми лицами, желающими в той или иной степени зашифровать свои данные в сети.

FURFUR начинает серию статей о криптографии и методах ее использования. Первый материал - вводный: история вопроса и базовые термины.

Формально криптография (с греческого - «тайнопись») определяется как наука, обеспечивающая секретность сообщения. Пионером, написавшим первый научный труд о криптографии, считается Эней Тактик, завершивший свой земной путь задолго до Рождества Христова. Свои данные пытались шифровать еще Индия и Месопотамия, но первые надежные системы защиты были разработаны в Китае. Писцы Древнего Египта часто использовали изощренные способы письма, чтобы привлечь внимание к своим текстам. Чаще всего шифровка информации использовалась в военных целях: широко известен шифр «Скитала», примененный Спартой против Афин в V веке до н. э.

Криптография активно развивалась в Средние века, шифровками пользовались многочисленные дипломаты и купцы. Одним из самых известных шифров Средних веков называют кодекс Copiale - изящно оформленную рукопись с водяными знаками, не расшифрованную до сих пор. Эпоха Возрождения стала золотым веком криптографии: ее изучением занимался Фрэнсис Бэкон, описавший семь методов скрытого текста. Он же предложил двоичный способ шифрования, аналогичный использующемуся в компьютерных программах в наше время. Значительное влияние на развитие криптографии оказало появление телеграфа: сам факт передачи данных перестал быть секретным, что заставило отправителей сосредоточиться на шифровке данных.

Во время Первой мировой войны криптография стала признанным боевым инструментом. Разгаданные сообщения противников вели к ошеломляющим результатам. Перехват телеграммы немецкого посла Артура Циммермана американскими спецслужбами привел к вступлению США в боевые действия на стороне союзников.

Вторая мировая война послужила своеобразным катализатором развития компьютерных систем - через криптографию. Использованные шифровальные машины (немецкая «Энигма», английская «Бомба Тьюринга») ясно показали жизненную важность информационного контроля. В послевоенное время правительства многих стран наложили мораторий на использование криптографии. Ключевые работы публиковались исключительно в виде секретных докладов - таких, как, например книга Клода Шеннона «Теория связи в секретных системах», подходящая к криптографии как к новой математической науке.

Правительственная монополия рухнула только в 1967 году с выходом книги Дэвида Кана «Взломщики кодов». Книга подробно рассматривала всю историю криптографии и криптоанализа. После ее публикации в открытой печати стали появляться и другие работы по криптографии. В это же время сформировался современный подход к науке, четко определились основные требования к зашифрованной информации: конфиденциальность, неотслеживаемость и целостность. Криптография была разделена на две взаимодействующие части: криптосинтез и криптоанализ. То есть криптографы обеспечивают информации защиту, а криптоаналитики, напротив, ищут пути взлома системы.

Wehrmacht Enigma («Энигма»)

Шифровальная машина Третьего рейха. Код, созданный при помощи «Энигмы»,
считается одним из сильнейших из использованных во Второй мировой.


Turing Bombe («Бомба Тьюринга»)

Разработанный под руководством Алана Тьюринга дешифратор. Его использование
позволило союзникам расколоть казавшийся монолитным код «Энигмы».

Cовременные методы использования криптографии

Появление доступного интернета перевело криптографию на новый уровень. Криптографические методы стали широко использоваться частными лицами в электронных коммерческих операциях, телекоммуникациях и многих других средах. Первая получила особенную популярность и привела к появлению новой, не контролируемой государством валюты - биткойна.

Многие энтузиасты быстро смекнули, что банковский перевод - штука, конечно, удобная, однако, для покупки таких приятных в быту вещей, как оружие или «вещества», он не подходит. Не подходит он и при запущенных случаях паранойи, ибо требует от получателя и отправителя обязательной аутентификации.

Аналоговую систему расчета предложил один из «шифропанков», о которых речь пойдет ниже, молодой программист Вэй Дай. Уже в 2009 году Сатоши Накамото (которого многие свято считают целой хакерской группировкой) разработал платежную систему нового типа - BitCoin. Так родилась криптовалюта. Ее транзакции не требуют посредника в виде банка или другой финансовой организации, отследить их невозможно. Сеть полностью децентрализована, биткойны не могут быть заморожены или изъяты, они полностью защищены от государственного контроля. В то же время биткойн может использоваться для оплаты любых товаров - при условии согласия продавца.

Новые электронные деньги производят сами пользователи, предоставляющие вычислительные мощности своих машин для работы всей системы BitCoin. Такой род деятельности называется майнинг (mining - добыча полезных ископаемых). Заниматься майнингом в одиночку не очень выгодно, гораздо проще воспользоваться специальными серверами - пулами. Они объединяют ресурсы нескольких участников в одну сеть, а затем распределяют полученную прибыль.

Крупнейшей площадкой купли-продажи биткойнов является японская Mt. Gox, через которую проводятся 67% транзакций в мире. Заядлые анонимы предпочитают ей российскую BTC-E: регистрация здесь не требует идентификации пользователя. Курс криптовалюты довольно-таки нестабилен и определяется только балансом спроса и предложения в мире. Предостережением новичкам может служить известная история о том, как 10 тысяч единиц, потраченых одним из пользователей на пиццу, превратились через некоторое время в 2,5 миллиона долларов.

«Главная проблема обычной валюты в том, что она требует доверия. Центральный банк требует доверия к себе и своей валюте, однако сама история фиатных денег полна примеров подрыва доверия. С появлением электронной валюты, основанной на надежной криптографии, нам больше не нужно доверять «честному дяде», деньги наши могут быть надежно сохранены, а использование их становится простым и удобным»

Сатоши Накамото, хакер

Терминология

Основными операторами являются исходное сообщение (открытый текст, plaintext) и его изменение (шифротекст, ciphertext). Дешифровкой (decryption) называется сам процесс трансформации шифротекста в текст открытый. Для начинающего криптографа важно запомнить и несколько других терминов:

АЛИСА, ЕВА И БОБ (ALICE)

Свести описание криптопротокола к математической формуле помогают определенные имена участников игры: Алиса и Боб. Противник в действующей криптосистеме обозначен как Ева (eavesdropper - подслушивающий). В редких случаях имя меняется, однако противник всегда остается женского рода.

АВТОНОМНАЯ СИСТЕМА ЭЛЕКТРОННЫХ ПЛАТЕЖЕЙ (OFF-LINE E-CASH SYSTEM)

Благодаря ей покупатель и продавец могут работать напрямую, без участия банка-эмитента. Минус этой системы заключается в дополнительной транзакции, которую совершает продавец, переводящий полученные деньги на свой банковский счет.

АНОНИМНОСТЬ (ANONYMITY)

Это понятие означает, что участники акции могут работать конфиденциально. Анонимность бывает абсолютной и отзываемой (в системах, подразумевающих участие третьего лица, арбитра). Арбитр может при определенных условиях идентифицировать любого игрока.

ПРОТИВНИК (ADVERSARY)

Нарушитель. Он стремится нарушить периметр конфиденциальности протокола. Вообще, использующие криптопротокол участники воспринимают друг друга как потенциальных противников - по умолчанию.

ЧЕСТНЫЙ УЧАСТНИК (HONEST PARTY)

Честный игрок, обладающий необходимой информацией и строго следующий протоколу системы.

ЦЕНТР ДОВЕРИЯ (AUTHORITY (TRUSTED AUTHORITY))

Своеобразный арбитр, который пользуется доверием всех участников системы. Необходим в качестве меры предосторожности, гарантирующей участникам соблюдение оговоренного протокола.

БОЛЬШОЙ БРАТ (BIG BROTHER)

Да, именно он. Действия Большого Брата не контролируются и не отслеживаются другими участниками криптопротокола. Доказать нечестную игру Большого Брата невозможно, даже если все в этом уверены.

Анонимность

Начинающие ревнители конфиденциальности сохраняют инкогнито при помощи специальных сайтов - веб-прокси. Они не требуют отдельного программного обеспечения и не забивают голову пользователя сложной настройкой. Искомый адрес юзер вводит не в браузере, а в адресной строке сайта-анонимайзера. Тот обрабатывает информацию и передает от своего имени. Заодно такой сервер получает чудесную возможность скопировать проходящие через него данные. В большинстве случаев так и происходит: информация лишней не бывает.

Продвинутые анонимы предпочитают использовать средства посерьезнее. Например, Tor (The Onion Router). Этот сервис использует целую цепочку прокси-серверов, контролировать которую практически невозможно из-за ее разветвленности. Система многослойной (на сленге - луковой) маршрутизации обеспечивает пользователям Tor высокий уровень безопасности данных. Кроме того, The Onion Router мешает анализировать проходящий через него трафик.

Шифропанк

Впервые термин прозвучал из уст известной хакерши Джуд Милхон в адрес чрезмерно увлеченных идеей анонимности программистов. Основная идея шифропанка (cypherpunk) - возможность обеспечения анонимности и безопасности в сети самими пользователями. Достигнуть этого можно посредством открытых криптографических систем, которые в большинстве своем разрабатываются активистами шифропанка. Движение имеет неявную политическую окраску, большей части участников близок криптоанархизм и многие либертарные социальные идеи. Известнейший представитель шифропанка - Джулиан Ассанж, на радость всем мировым державам основавший WikiLeaks. У шифропанков есть официальный манифест .

«Новая большая игра - это отнюдь не война за нефтепроводы... Новое всемирное сокровище - это контроль
над гигантскими потоками данных, соединяющими целые континенты и цивилизации, связывающими в единое целое коммуникацию миллиардов людей и организаций»

Джулиан Ассанж

Джулиан Ассанж

На своем портале WikiLeaks публично продемонстрировал всем желающим изнанку многих государственных структур. Коррупция, военные преступления, сверхсекретные тайны - вообще все, до чего дотянулся деятельный либертарианец, стало достоянием общественности. Помимо этого, Ассанж - создатель адской криптосистемы под названием «Отрицаемое шифрование» (Deniable encryption). Это способ компоновки зашифрованной информации, который обеспечивает возможность правдоподобного отрицания ее наличия.

Брэм Коэн

Американский программист, родом из солнечной Калифорнии. На радость всему миру придумал протокол BitTorrent, которым небезуспешно пользуются и по сей день.

Внедряемые «АСТ» корпоративные средства шифрования могут поддерживать алгоритмы шифрования ГОСТ и обеспечивать необходимые классы криптозащиты в зависимости от необходимой степени защиты, нормативной базы и требований совместимости с иными, в том числе, внешними системами.

Средства криптографической защиты информации (СКЗИ) являются важной составляющей при обеспечении информационной безопасности и позволяют гарантировать высокий уровень сохранности данных, даже в случае попадания зашифрованных электронных документов в руки третьих лиц, а также при краже или утере носителей информации с ними. СКЗИ сегодня применяются почти в каждой компании – чаще на уровне взаимодействия с автоматизированными банковскими системами и государственными информационными системами; реже – для хранения корпоративных данных и обмена ими. Тем временем, именно последнее применение средств шифрования позволяет защитить бизнес от опасных утечек критически ценной информации с гарантией до 99% даже с учетом человеческого фактора.

Функционально потребность в применении СКЗИ, также, обуславливается все более растущей популярностью средств электронного документооборота, архивации и безбумажного взаимодействия. Важность документов, обрабатываемых в таких системах, диктует обязательность обеспечения высокой защищенности информации, что невозможно выполнить без применения средств шифрования и электронной подписи.

Внедрение СКЗИ в корпоративную практику предусматривает создание программно-аппаратного комплекса, архитектура и состав которого определяется, исходя из потребностей конкретного заказчика, требований законодательства, поставленных задач и необходимых методов, и алгоритмов шифрования. Сюда могут входить программные компоненты шифрования (криптопровайдеры), средства организации VPN, средства удостоверения, средства формирования и проверки ключей и ЭЦП, служащих для организации юридически значимого документооборота, аппаратные носители информации.

Внедряемые «АСТ» корпоративные средства шифрования могут поддерживать алгоритмы шифрования ГОСТ и обеспечивать необходимые классы криптозащиты в зависимости от необходимой степени защиты, нормативной базы и требований совместимости с иными, в том числе, внешними системами. При этом средства шифрования обеспечивают защиту всего множества информационных компонент – файлов, каталогов с файлами и архивов, физических и виртуальных носителей информации, целиком серверов и СХД.

Решение сможет обеспечить весь комплекс мер по надежной защите информации при ее хранении, передаче, использовании, а также по управлению самими СКЗИ, включая:

  • Обеспечение конфиденциальности информации
  • Обеспечение целостности информации
  • Гарантию подлинности информации
  • Целевую защиту информации, включая:
    — Шифрование и расшифрование
    — Создание и проверку ЭЦП
  • Гибкость настройки, управления и использования СКЗИ
  • Защиту СКЗИ, включая мониторинг и обнаружение случаев нарушения работоспособности, попыток несанкционированного доступа, случаев компрометации ключей.

Реализованные проекты

Связанные услуги:

  • Мониторинг событий и управление инцидентами ИБ

    Самым важным фактором при обеспечении информационной безопасности (ИБ) является наличие полной и достоверной информации о событиях,

    [...]
  • Обеспечение сетевой безопасности и защиты периметра

    Сетевая инфраструктура технологически лежит в основе всех корпоративных ИТ-систем и является транспортной артерией для информации,

    [...]
  • Защита от целенаправленных атак

    Одной из наиболее серьезных и опасных угроз для бизнеса с точки зрения информационной безопасности (ИБ) являются целенаправленные

    [...]
  • Защита АСУ ТП

    Автоматизированная система управления технологическими процессами (АСУ ТП) на производстве является основополагающим решением,

    [...]
  • Системы анализа и управления уязвимостями

    Как не бывает абсолютно здоровых людей, так и не бывает абсолютно защищенных информационных систем. Компоненты ИТ-инфраструктуры

    [...]
  • Защита от утечки информации (DLP-система)

    Любая организация имеет документы с ограниченным доступом, содержащие ту или иную конфиденциальную информацию. Их попадание в чужие

Средства криптографической защиты информации, или сокращенно СКЗИ, используются для обеспечения всесторонней защиты данных, которые передаются по линиям связи. Для этого необходимо соблюсти авторизацию и защиту электронной подписи, аутентификацию сообщающихся сторон с использованием протоколов TLS и IPSec, а также защиту самого канала связи при необходимости.

В России использование криптографических средств защиты информации по большей части засекречено, поэтому общедоступной информации касательно этой темы мало.

Методы, применяемые в СКЗИ

  • Авторизация данных и обеспечение сохранности их юридической значимости при передаче или хранении. Для этого применяют алгоритмы создания электронной подписи и ее проверки в соответствии с установленным регламентом RFC 4357 и используют сертификаты по стандарту X.509.
  • Защита конфиденциальности данных и контроль их целостности. Используется асимметричное шифрование и имитозащита, то есть противодействие подмене данных. Соблюдается ГОСТ Р 34.12-2015.
  • Защита системного и прикладного ПО. Отслеживание несанкционированных изменений или неверного функционирования.
  • Управление наиболее важными элементами системы в строгом соответствии с принятым регламентом.
  • Аутентификация сторон, обменивающихся данными.
  • Защита соединения с использованием протокола TLS.
  • Защита IP-соединений при помощи протоколов IKE, ESP, AH.

Подробным образом методы описаны в следующих документах: RFC 4357, RFC 4490, RFC 4491.

Механизмы СКЗИ для информационной защиты

  1. Защита конфиденциальности хранимой или передаваемой информации происходит применением алгоритмов шифрования.
  2. При установлении связи идентификация обеспечивается средствами электронной подписи при их использовании во время аутентификации (по рекомендации X.509).
  3. Цифровой документооборот также защищается средствами электронной подписи совместно с защитой от навязывания или повтора, при этом осуществляется контроль достоверности ключей, используемых для проверки электронных подписей.
  4. Целостность информации обеспечивается средствами цифровой подписи.
  5. Использование функций асимметричного шифрования позволяет защитить данные. Помимо этого для проверки целостности данных могут быть использованы функции хеширования или алгоритмы имитозащиты. Однако эти способы не поддерживают определения авторства документа.
  6. Защита от повторов происходит криптографическими функциями электронной подписи для шифрования или имитозащиты. При этом к каждой сетевой сессии добавляется уникальный идентификатор, достаточно длинный, чтобы исключить его случайное совпадение, и реализуется проверка принимающей стороной.
  7. Защита от навязывания, то есть от проникновения в связь со стороны, обеспечивается средствами электронной подписи.
  8. Прочая защита - против закладок, вирусов, модификаций операционной системы и т. д. - обеспечивается с помощью различных криптографических средств, протоколов безопасности, антивирусных ПО и организационных мероприятий.

Как можно заметить, алгоритмы электронной подписи являются основополагающей частью средства криптографической защиты информации. Они будут рассмотрены ниже.

Требования при использовании СКЗИ

СКЗИ нацелено на защиту (проверкой электронной подписи) открытых данных в различных информационных системах общего использования и обеспечения их конфиденциальности (проверкой электронной подписи, имитозащитой, шифрованием, проверкой хеша) в корпоративных сетях.

Персональное средство криптографической защиты информации используется для охраны персональных данных пользователя. Однако следует особо выделить информацию, касающуюся государственной тайны. По закону СКЗИ не может быть использовано для работы с ней.

Важно: перед установкой СКЗИ первым делом следует проверить сам пакет обеспечения СКЗИ. Это первый шаг. Как правило, целостность пакета установки проверяется путем сравнения контрольных сумм, полученных от производителя.

После установки следует определиться с уровнем угрозы, исходя из чего можно определить необходимые для применения виды СКЗИ: программные, аппаратные и аппаратно-программные. Также следует учитывать, что при организации некоторых СКЗИ необходимо учитывать размещение системы.

Классы защиты

Согласно приказу ФСБ России от 10.07.14 под номером 378, регламентирующему применение криптографических средств защиты информации и персональных данных, определены шесть классов: КС1, КС2, КС3, КВ1, КВ2, КА1. Класс защиты для той или иной системы определяется из анализа данных о модели нарушителя, то есть из оценки возможных способов взлома системы. Защита при этом строится из программных и аппаратных средств криптографической защиты информации.

АУ (актуальные угрозы), как видно из таблицы, бывают 3 типов:

  1. Угрозы первого типа связаны с недокументированными возможностями в системном ПО, используемом в информационной системе.
  2. Угрозы второго типа связаны с недокументированными возможностями в прикладном ПО, используемом в информационной системе.
  3. Угрозой третьего типа называются все остальные.

Недокументированные возможности - это функции и свойства программного обеспечения, которые не описаны в официальной документации или не соответствуют ей. То есть их использование может повышать риск нарушения конфиденциальности или целостности информации.

Для ясности рассмотрим модели нарушителей, для перехвата которых нужен тот или иной класс средств криптографической защиты информации:

  • КС1 - нарушитель действует извне, без помощников внутри системы.
  • КС2 - внутренний нарушитель, но не имеющий доступа к СКЗИ.
  • КС3 - внутренний нарушитель, который является пользователем СКЗИ.
  • КВ1 - нарушитель, который привлекает сторонние ресурсы, например специалистов по СКЗИ.
  • КВ2 - нарушитель, за действиями которого стоит институт или лаборатория, работающая в области изучения и разработки СКЗИ.
  • КА1 - специальные службы государств.

Таким образом, КС1 можно назвать базовым классом защиты. Соответственно, чем выше класс защиты, тем меньше специалистов, способных его обеспечивать. Например, в России, по данным за 2013 год, существовало всего 6 организаций, имеющих сертификат от ФСБ и способных обеспечивать защиту класса КА1.

Используемые алгоритмы

Рассмотрим основные алгоритмы, используемые в средствах криптографической защиты информации:

  • ГОСТ Р 34.10-2001 и обновленный ГОСТ Р 34.10-2012 - алгоритмы создания и проверки электронной подписи.
  • ГОСТ Р 34.11-94 и последний ГОСТ Р 34.11-2012 - алгоритмы создания хеш-функций.
  • ГОСТ 28147-89 и более новый ГОСТ Р 34.12-2015 - реализация алгоритмов шифрования и имитозащиты данных.
  • Дополнительные криптографические алгоритмы находятся в документе RFC 4357.

Электронная подпись

Применение средства криптографической защиты информации невозможно представить без использования алгоритмов электронной подписи, которые набирают все большую популярность.

Электронная подпись - это специальная часть документа, созданная криптографическими преобразованиями. Ее основной задачей являются выявление несанкционированного изменения и определение авторства.

Сертификат электронной подписи - это отдельный документ, который доказывает подлинность и принадлежность электронной подписи своему владельцу по открытому ключу. Выдача сертификата происходит удостоверяющими центрами.

Владелец сертификата электронной подписи - это лицо, на имя которого регистрируется сертификат. Он связан с двумя ключами: открытым и закрытым. Закрытый ключ позволяет создать электронную подпись. Открытый ключ предназначен для проверки подлинности подписи благодаря криптографической связи с закрытым ключом.

Виды электронной подписи

По Федеральному закону № 63 электронная подпись делится на 3 вида:

  • обычная электронная подпись;
  • неквалифицированная электронная подпись;
  • квалифицированная электронная подпись.

Простая ЭП создается за счет паролей, наложенных на открытие и просмотр данных, или подобных средств, косвенно подтверждающих владельца.

Неквалифицированная ЭП создается с помощью криптографических преобразований данных при помощи закрытого ключа. Благодаря этому можно подтвердить лицо, подписавшее документ, и установить факт внесения в данные несанкционированных изменений.

Квалифицированная и неквалифицированная подписи отличаются только тем, что в первом случае сертификат на ЭП должен быть выдан сертифицированным ФСБ удостоверяющим центром.

Область использования электронной подписи

В таблице ниже рассмотрены сферы применения ЭП.

Активнее всего технологии ЭП применяются в обмене документами. Во внутреннем документообороте ЭП выступает в роли утверждения документов, то есть как личная подпись или печать. В случае внешнего документооборота наличие ЭП критично, так как является юридическим подтверждением. Стоит также отметить, что документы, подписанные ЭП, способны храниться бесконечно долго и не утрачивать своей юридической значимости из-за таких факторов, как стирающиеся подписи, испорченная бумага и т. д.

Отчетность перед контролирующими органами - это еще одна сфера, в которой наращивается электронный документооборот. Многие компании и организации уже оценили удобство работы в таком формате.

По закону Российской Федерации каждый гражданин вправе пользоваться ЭП при использовании госуслуг (например, подписание электронного заявления для органов власти).

Онлайн-торги - еще одна интересная сфера, в которой активно применяется электронная подпись. Она является подтверждением того факта, что в торгах участвует реальный человек и его предложения могут рассматриваться как достоверные. Также важным является то, что любой заключенный контракт при помощи ЭП приобретает юридическую силу.

Алгоритмы электронной подписи

  • Full Domain Hash (FDH) и Public Key Cryptography Standards (PKCS). Последнее представляет собой целую группу стандартных алгоритмов для различных ситуаций.
  • DSA и ECDSA - стандарты создания электронной подписи в США.
  • ГОСТ Р 34.10-2012 - стандарт создания ЭП в РФ. Данный стандарт заменил собой ГОСТ Р 34.10-2001, действие которого официально прекратилось после 31 декабря 2017 года.
  • Евразийский союз пользуется стандартами, полностью аналогичными российским.
  • СТБ 34.101.45-2013 - белорусский стандарт для цифровой электронной подписи.
  • ДСТУ 4145-2002 - стандарт создания электронной подписи в Украине и множество других.

Стоит также отметить, что алгоритмы создания ЭП имеют различные назначения и цели:

  • Групповая электронная подпись.
  • Одноразовая цифровая подпись.
  • Доверенная ЭП.
  • Квалифицированная и неквалифицированная подпись и пр.

Средства криптографической защиты информации применяются для защиты личных или секретных сведений, передающихся по линиям связи. Чтобы сохранить конфиденциальность данных, рекомендуется пройти авторизацию, аутентификацию сторон при помощи протоколов TLS, IPSec, обеспечить безопасность электронной подписи и самого канала связи.

Компания ISBC предлагает эффективные решения под брендом , касающиеся применения безопасных хранилищ для важной информации, электронной подписи, охраны доступа при использовании систем контроля. С нами сотрудничают крупнейшие государственные организации, включая ФНС России, ведущие производители средств криптографической защиты информации и разработчики программного обеспечения, удостоверяющие центры, работающие в разных регионах России.

СКЗИ: виды, применение

При использовании СКЗИ применяются следующие методы:

  1. Авторизация данных, обеспечение криптозащиты их юридической значимости в процессе передачи, хранения. Для этого используются алгоритмы формирования электронного ключа, его проверки в соответствии с указанным регламентом.
  2. Криптографическая защита личной или секретной информации, контроль над ее целостностью. Применение ассиметричного шифрования, имитозащита (исключение вероятности подмены данных).
  3. Криптографическая защита прикладного, системного программного обеспечения. Обеспечение контроля над несанкционированными изменениями, некорректной работой.
  4. Управление основными элементами системы согласно установленному регламенту.
  5. Аутентификация сторон, которые обмениваются данными.
  6. Криптографическая защита передачи информации с применением протокола TLS.
  7. Использование средств криптографической защиты IP-соединений путем использования ESP, IKE, AH.

Полное описание применения средств криптографической защиты информации содержится в профильных документах.

Решения СКЗИ

В процессе обеспечения информационной безопасности СКЗИ применяют нижеперечисленные методы:

  1. Аутентификация в приложениях осуществляется благодаря Blitz Identity Provider. Сервер аутентификации позволяет, используя единую учетную запись, управлять подключенными ресурсами любых типов (приложения Native, Web, Desktop), обеспечивает строгую проверку подлинности пользователи при помощи токена, смарт-карты.
  2. В момент установления связи опознание сторон обеспечивается благодаря электронной подписи. Inter-PRO обеспечивает защиту HTTP-трафика, возможность редактирования, контроля цифровой подписи онлайн.
  3. Средства для криптографической защиты, применяемые для конфиденциальности цифрового документооборота, также используют электронную подпись. Для работы с электронным ключом в формате веб-приложения применяется плагин Blitz Smart Card Plugin.
  4. Применение криптографических средств защиты позволяет исключить внедрение закладных устройств и вредоносного ПО, модификацию системы.

Классификация СКЗИ

Средства, используемые для криптографической защиты открытой информации в разных системах, обеспечения конфиденциальности в открытых сетях, нацелены на защиту целостности данных. Важно, что применение подобных инструментов для хранения государственной тайны запрещено законодательством, но вполне подходит для обеспечения сохранности персональных сведений.

Средства, используемые для криптографической защиты информации, классифицируются в зависимости от вероятной угрозы, оценки вероятного способа взлома системы. Они зависят от наличия недокументированных возможностей или несоответствия заявленным характеристикам, которые могут содержать:

  1. системное ПО;
  2. прикладное ПО;
  3. прочие недостатки носителя информации.

Программная защита представлена комплексом решений, предназначенных для шифрования сообщений, размещенных на разных носителях информации. Такими носителями информации могут быть карты памяти, флешки или жесткие диски. Самые простые из них можно найти в открытом доступе. К программной криптозащите можно отнести виртуальные сети, предназначенные для обмена сообщениями, работающими «поверх Интернета», например, VPN, расширения, имеющие протокол HTTP, поддерживающие расширения для шифрования HTTPS, SSL. Протоколы, используемые для обмена сведениями, применяются для создания интернет-приложений, в IP-телефонии.

Программную криптозащиту удобно использовать на домашних компьютерах, для серфинга по сети Интернет, в других областях, где не предъявляются высокие требования к функциональности, надежности системы. Или, как при использовании сети интернет, требуется создание большого количества различных защищенных соединений.


Системы аппаратной криптозащиты

Средства аппаратной криптографической защиты представляют собой физические приборы, связанные с системой передачи данных, обеспечивающие шифрование, запись, передачу сведений. Аппараты могут представлять собой персональные устройства или выглядеть в качестве:

  • USB-шифраторов, флеш-дисков.

Используя эти устройства можно построить идеально защищенные компьютерные сети.

Средства аппаратной криптозащиты легко устанавливаются, выдают высокую скорость отклика. Информация, необходимая для обеспечения высокого уровня криптографической защиты, размещается в памяти устройства. Она может быть считана контактным или бесконтактным способом.

При использовании СКЗИ, выпускаемых под брендом ESMART, вы получите эффективные технологии, осуществляющие эффективную криптографическую защиту в режимах онлайн или оффлайн, аутентификацию пользователя при помощи токенов, смарт-карт или биометрических данных. Сочетание аппаратных методов с программными решениями позволяет получить самый высокий уровень защиты при небольших затратах времени, сил в процессе обмена информацией.


Важной особенностью продуктовой линейки средств криптографической защиты ESMART® является наличие единственного в своем роде продукта – , основанного на отечественной микросхеме MIK 51 от ПАО «Микрон», с помощью которого можно эффективно решить многие проблемы, связанные с безопасностью и защитой данных. Он представляет собой СКЗИ с аппаратной поддержкой российских криптографических алгоритмов ГОСТ на базе отечественной микросхемы.

СКЗИ ESMART® Token ГОСТ выпускается в виде смарт-карт и токенов. Разработка компании ESMART сертифицирована ФСБ России по классам КС1/КС2/КС3. Сертификат №СФ/124-3668 удостоверяет, что СКЗИ ESMART Token ГОСТ, соответствует требованиям ФСБ России к шифровальным (криптографическим) средствам класса КС1/КС2/КС3, требованиям к средствам электронной подписи, утвержденным приказом ФСБ №796 и может использоваться для криптографической защиты информации, не содержащий сведений, составляющих государственную тайну. Извещение АБПН.1-2018 допускает использовать ГОСТ Р 34.10-2001 в СКЗИ ESMART Token ГОСТ в течении срока действия сертификата в связи переносом сроков перехода на ГОСТ Р 34.10-2012 до 1 января 2020 года. Также ESMART® Token ГОСТ может использоваться для генерации ключей, формирования и проверки электронной подписи, строгой многофакторной аутентификации пользователей и др.

Компания ESMART предлагает приобрести современные СКЗИ по лучшим ценам от производителя. Наш инженерный R&D центр и производство расположены в Зеленограде. Использование чипов российского производства позволяет предложить лучшие максимально конкурентоспособные цены на средства криптографической защиты информации для государственных проектов, предприятий и организаций.